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Introduction
The study of probabilistic models lies at the heart of statistical
machine learning. Examples of probabilistic models:
1. Probabilistic graphical models (Ising models, Bayes nets, etc.);
2. Deep generative models (autoencoders, GANs, etc.).
Problem (Distance computation problem; informal). Given two
probabilistic models M1,M2, compute/estimate how close are they.

M1 M2

There are many notions of distance between distributions:
1. f -divergences (Hellinger, KL, χ2, etc.);
2. Integral probability metrics (Wasserstein, TV, etc.).
We focus on total variation (TV) distance dTV.
Definition. For distributions P, Q over a common domain D,

dTV(P, Q) := sup
A⊆D

|P(A)− Q(A)| .

TV distance is important, because:
1. It is natural: dTV(P, Q) is equal to the maximum gap between

the probabilities assigned by P and Q to a single event;
2. It has many desirable properties: It is a metric, it is bounded

in [0, 1], and is invariant with respect to bijections.

Central Question
What is the computational complexity of comput-
ing/estimating TV distance between two probabilistic models?

Results
Product distributions are distributions of the form P =⊗n

i=1 Bern(pi) where p1, . . . , pn ∈ [0, 1].
Theorem 1. Computing the TV distance between two product distri-
butions is #P-hard.
Theorem 2. There is an FPTAS for estimating the TV distance be-
tween an arbitrary product distribution P and a product distribution
Q with a bounded number of distinct parameters.

Related Work
• Goldreich, Sahai, and Vadhan (1999, 2003) showed that TV dis-

tance is hard to additively estimate for distributions samplable
by Boolean circuits.

• Canonne and Rubinfeld (2014) showed how to additively esti-
mate TV distance for probabilistic models with efficient infer-
ence and sampling.

• Feng, Guo, Jerrum, and Wang (2022) designed an FPRAS for
estimating the TV distance between two product distributions.
(This work is a follow-up to our work.)

Techniques: Theorem 1

Definition (#SUBSETPROD). Given integers a1, . . . , an, and a target
integer T, compute the number of sets S ⊆ [n] such that ∏i∈S ai = T.
Theorem (Garey and Johnson (1979); Yao). #SUBSETPROD is #P-
hard.
Definition (#PMFEQUALS). Given p1, . . . , pn ∈ [0, 1] and a target
v ∈ [0, 1], compute the number of x ∈ {0, 1}n such that P(x) = v,
where P is the product distribution defined by p1, . . . , pn.

Claim. #SUBSETPROD
(1)
≤m #PMFEQUALS

(2)
≤T dTV.

(1): #SUBSETPROD ≤m #PMFEQUALS. Let pi := ai/ (1 + ai)
and v := T ∏n

i=1 (1 − pi). Then

∏
i∈S

ai = T ⇔ ∏
i∈S

pi

1 − pi
=

v
∏i∈[n](1 − pi)

⇔ P(1S) = v.

(2): #PMFEQUALS ≤T dTV. Define auxiliary distributions
P′, Q′, P̂, Q̂ as follows:
• p̂i := pi for i ∈ [n] and p̂n+1 := 1; q̂i := 1/2 for i ∈ [n] and

q̂n+1 := v2n;
• p′

i := pi for i ∈ [n], p′
n+1 := 1, and p′

n+2 := 1
2 + β; q′i := 1

2 for
i ∈ [n], q′n+1 := v2n, and q′n+2 := 1

2 − β for some appropriately
chosen β that depends on the granularity of our precision.

Claim. It is the case that
|{x | P(x) = v}| =

(
dTV(P′, Q′)− dTV

(
P̂, Q̂

))
/ (2βv) .

Techniques: Theorem 2
For simplicity of presentation, consider the case where Q is the
uniform distribution U. The idea is to reduce the computation
of dTV(P, U) to O(poly(n)) instances of #KNAPSACK. Since the
latter problem has an FPTAS by Gopalan, Klivans, and Meka
(2010), and Stefankovic, Vempala, and Vigoda (2010), the theo-
rem follows.
1. To every subset S ⊆ [n], assign a non-negative weight YS ∈
[1, V) for some V that depends on the granularity of our
precision, and show that a normalized dTV(P, U) is equal to
∑S⊆[n] YS.

2. Let ki be the number of sets S ⊆ [n] for which YS lies in[
(1 + ε)i−1, (1 + ε)i

)
. Then

∑
i∈[poly(n)]

ki (1 + ε)i ≈ε ∑
S⊆[n]

YS = M · dTV(P, U) ,

where M is a normalization constant.
3. Reduce the computation of each ki to O(1) #KNAPSACK in-

stances.

Open Problems

1. Does there exist an FPTAS for approximating the TV distance
between two product distributions?

2. For what other classes of probabilistic models do there exist
TV distance approximation schemes?

3. What about other notions of distance or similarity between
probabilistic models?
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