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What Is All About
We give a novel reduction from total variation distance estima-
tion (for Bayes nets) to probabilistic inference (for Bayes nets).

Bayes Nets
Bayes nets (Pearl, 1989) offer a succinct way of representing
high-dimensional distributions. They are defined by a DAG and
a collection of conditional probability distributions, one for each
DAG node. See Fig. 1.
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Fig. 1: A Bayes net G.

Note that the Boolean distribution represented by G can be de-
scribed by a look-up table consisting of 25 − 1 = 31 numbers,
while the description of G uses only 10 numbers (that is, 1 num-
ber for each of the distributions of x1 and x5, 2 numbers for each
of the conditional probability distributions of x2 and x4, and 4
numbers for that of x3).

Total Variation (TV) Distance
There are many notions of distance between distributions, such
as f -divergences (Hellinger, KL, χ2, etc.) or integral probability
metrics (Wasserstein, TV, etc.). We focus on TV distance.
Definition.For distributions P, Q over a common domain D, the
TV distance between P and Q is

dTV(P, Q) := sup
A⊆D

|P(A)− Q(A)| .

TV distance is important, because
1. it is natural: dTV(P, Q) is equal to the maximum gap between

the probabilities assigned by P and Q to a single event;
2. it has many desirable properties: It is a metric, it is bounded

in [0, 1], and is invariant with respect to bijections.

Probabilistic Inference
The following notion is a fundamental computational task with
a wide range of applications.
Definition. Given random variables X1, . . . , Xn and sets
S1, . . . , Sn, such that for all 1 ≤ i ≤ n the set Si is a subset
of the range of Xi, compute

Pr[X1 ∈ S1, . . . , Xn ∈ Sn] .

Some Related Work
• Bhattacharyya, Gayen, Meel, Myrisiotis, Pavan, and Vinod-

chandran (IJCAI 2023) proved that exact computation of TV
distance between product distributions is #P-hard.

• Feng, Guo, Jerrum, and Wang (TheoretiCS 2023) designed an
FPRAS for multiplicatively approximating the TV distance be-
tween any two product distributions, and Feng, Liu, and Liu
(SODA 2024) gave an FPTAS for the same task.

Our Results
Theorem 1. For any class C of Bayes nets for which probabilistic in-
ference is efficient, there is an FPRAS for estimating the TV distance
between any two Bayes nets from C defined over the same DAG.

We get the following, by the (folklore) fact that probabilistic in-
ference is efficient for Bayes nets of small treewidth.
Corollary 2. There is an FPRAS for estimating the TV distance be-
tween any two Bayes nets of treewidth O(log n) defined over the same
DAG of n nodes.

Techniques (Theorem 1): Power From Couplings

Definition. A coupling C between distributions P, Q is a joint dis-
tribution (X, Y) such that X ∼ P and Y ∼ Q. We say that a
coupling O is optimal if O is a coupling and PrO[X = Y = w] =
min(P(w) , Q(w)) for all w.

Couplings and TV distance. A straightforward way of estimat-
ing TV distance is to make use of its characterization that uses
optimal couplings. That is, for X ∼ P, Y ∼ Q, and optimal cou-
pling O, we have

dTV(P, Q) = Pr
O
[X ̸= Y] .

Problem. What is O? It is not clear how to find it!
Solution. Circumvent this issue by using partial couplings!

Definition. A partial coupling L between distributions P, Q is a
joint distribution (X, Y) such that X ∼ P and PrL[X = Y = w] =
min(P(w) , Q(w)) for all w (i.e., it is not required that Y ∼ Q.)

Solution (cont.). It would suffice to define an efficiently com-
putable estimator function f (bounded in [0, 1]) and efficiently
samplable distribution π such that

E
w∼π

[ f (w)] =
PrO[X ̸= Y]
PrL[X ̸= Y]

=
dTV(P, Q)

Z
,

for some sufficiently small Z = PrL[X ̸= Y] that is easy to com-
pute. Then we can estimate Ew∼π[ f (w)] by a Monte Carlo ap-
proach and therefore get an estimate of

Z · E
w∼π

[ f (w)] = dTV(P, Q) .

Where is the probabilistic inference algorithm used? The
probabilistic inference algorithm is used (a) in the computation
of Z and (b) to sample from π.

Open Problems

Figure 1: Our work on
arXiv.

We outline these questions:
1. For what other classes of probabilistic mod-

els do there exist TV distance approximation
schemes?

2. What can we say about other notions of
distance or similarity between probabilistic
models?


