
Fix any accuracy and confidence 
parameters ε > 0 and δ > 0. 
Given sample access to a 
distribution ℙ over n variables, 
each defined on the alphabet ∑, 
and the promise that there is a 
Bayes net with at most p 
parameters that represents ℙ,

IID samples from ℙ suffice to 
learn a distribution ℚ defined on 
DAG with ≤ p parameters such 
that dTV(ℙ,ℚ) ≤ ε, with success 
probability ≥ 1 - δ.

• If ℚ(x1,x2,x4,x5) = ∑x3 ℙ(x1,...,x5) is a distribution 
on {X1, X2, X4, X5} obtained by marginalizing out 
X3 from 𝒢, then ℚ is represented by ℋ.

Given a "succinct" description of 
a distribution ℙ and a number p, 
how easy is it to find a Bayes net 
𝒢 of at most p parameters such 

that 𝒢 represents ℙ?
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• Any distribution ℙ on n nodes X = {X1, …, Xn} 
can be described by 2n-1 entries in a lookup 
table.

• Bayes nets provide a succinct way of 
representing high-dimensional distributions and 
are defined by
○ a directed acyclic graph (DAG);
○ a collection of conditional probability 

distributions, one for each node in the DAG.

Bayesian networks (Bayes Nets)

Central Question

• Any distribution represented by 𝒢 can be 
described by 10 < 25 - 1 = 31 parameters:
○ 1 number for ℙ(X1);
○ 1 number for ℙ(X5);
○ 2 numbers for ℙ(X2 | X1);
○ 4 numbers for ℙ(X3 | X2, X5);
○ 2 numbers for ℙ(X4 | X3);
○ e.g., we can deduce ℙ(X1 = 1) from ℙ(X1 = 

0).

x1 x2 x3 x4

x5𝒢

x1 x2 x4

x5ℋ

Some related work
• [CH92, SDLC93, HGC95] studied the problem of 

learning the underlying DAG of a Bayes net from 
data, by focusing on maximizing certain scoring 
criterion by the underlying DAG.

• This task was later shown to be NP-hard 
[Chi96].

• [CHM04] showed that deciding whether a given 
distribution ℙ can be represented by some 
Bayes net of at most p parameters or not is 
NP-hard.

• There are well-known algorithms for learning the 
underlying DAG of a Bayes net from 
distributional samples such as the PC [SGS00] 
and GES [Chi02] algorithms.

• More recently, [BCD20] gave finite sample 
guarantees of learning Bayes nets that have n 
nodes, each taking values over an alphabet ∑, 
using samples from ℙ.

In-degree versus parameters
• While one can upper bound complexity of a 

Bayes net by its maximum in-degree d, the 
number of parameters is more fine-grained.
○ A star: O(n + 2d) parameters;
○ A clique: Ω(n ⋅ 2d) parameters.

• "Succinct representation" of [CHM04]:
○ Distribution ℙ is a marginal of a Bayes net of 

small maximum in-degree.

NP-hardness result of [CHM04]

REALIZABLE-LEARN  is NP-hard

Result 2

Result 1

• Result 2 generalizes the finite sample result of 
[BCD20] from the degree-bounded setting to a 
parameter-bounded setting.

• Technical overview:
○ Construct an ε-net over all possible DAGs 

that satisfy the parameter upper bound p.
○ Apply a well-known technique from the 

density estimation literature called "Scheffé 
tournament;" see [DK14].

○ By a counting argument, there are not many 
possible DAGs that give rise to some Bayes 
net of at most p parameters.

○ By a counting argument, there are only a few 
conditional distributions that can be 
represented by a Bayes net 𝒢 over a DAG 
that realizes a given in-degree sequence.

○ Thus, we can bound the number of 
distributions that cover all conditional 
distributions which can be represented by a 
Bayes net over the DAG of 𝒢.

• Note that this result is only sample-efficient but 
not time-efficient since there are exponentially 
many candidates in the tournament.

• Technical overview (see diagram below):

     We show that if there exists some blackbox 
     polynomial time algorithm Learner for  
  REALIZABLE-LEARN, then there is a polynomial 
     time algorithm Reduction that correctly 
     answers LEARN-DBFAS. Therefore, 
  REALIZABLE-LEARN is also NP-hard.

Open problem
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Bayes net 𝒢

The REALIZABLE-LEARN  problem
The LEARN-DBFAS decision problem with 
the additional promise that there exists a 
Bayes net 𝒢 with at most p parameters 
such that 𝒢 represents ℙ.

• The DBFAS decision problem:
○ Given a directed graph 𝒢 = (X, E) with 

maximum vertex degree of 3, and a 
positive integer k ≤ |E|, determine whether 
there is a subset of edges E' ⊆ E with of 
size |E'| ≤ k such that E' contains at least 
one directed edge from every directed 
cycle in 𝒢.

○ [Gav77] showed that DBFAS is NP-hard.

• The LEARN decision problem:
○ Given variables X = (X1, …, Xn), a 

probability distribution ℙ over X, and a 
parameter bound p, determine whether 
there exists a Bayes net 𝒢 with at most p 
parameters such that 𝒢 represents ℙ.

○ [CHM04] showed that LEARN is NP-hard 
via reduction from DBFAS.

• Note that any distribution can be represented 
by some Bayes net over the complete DAG, 
since there are no d-separations implied by this 
kind of DAG; such a Bayes net over a 
complete DAG requires 2|X| - 1 parameters to 
describe.

• We define LEARN-DBFAS as the set of 
instances of LEARN that are in the range of the 
reduction of [CHM04] from DBFAS to LEARN.

• [CHM04] showed that LEARN-DBFAS is 
NP-hard, even when given access to an 
independence oracle for ℙ.
○ "Succinct representation" of [CHM04]: 

Distribution ℙ is a marginal of a Bayes net 
of small maximum in-degree.

Suppose we are given sample access to a 
distribution ℙ and are promised that there 
exists a Bayes net on 𝒢 with at most p 
parameters such that 𝒢 represents ℙ. Is it 
hard to find a Bayes net 𝒢' that has α ⋅ p 
parameters such that 𝒢' represents ℙ 
(where 𝒢' may not be 𝒢), for some 
constant α > 1?
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• Result 2 generalizes the finite sample result of 
[BCD20] from the degree-bounded setting to a 
parameter-bounded setting
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○ Construct an ε-net over all possible DAGs 

that satisfy the parameter upper bound p
○ Apply a well-known technique from the 

density estimation literature called "Scheffé 
tournament"; see [DK14].

○ By counting argument, there are not many 
possible DAGs that give rise to some Bayes 
net of at most p parameters.

○ By counting argument, there are only a few 
conditional distributions that are Markov with 
respect to a Bayes net 𝒢 over a DAG that 
realizes a given in-degree sequence.

○ Thus, one can bound the number of 
distributions that cover all possible 
conditional distributions which are Markov 
with respect to 𝒢.

• Note that this result is only sample-efficient but 
not time-efficient since there are exponentially 
many candidates in the tournament.
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The REALIZABLE-LEARN  problem
The LEARN-DBFAS decision problem with 
the additional promise that there exists a 
Bayes net 𝒢 with at most p parameters 
such that ℙ is Markov with respect to 𝒢

• The DBFAS decision problem
○ Given a directed graph 𝒢 = (X, E)$ with 

maximum vertex degree of 3, and a 
positive integer k ≤ |E|, determine whether 
there is a subset of edges E' ⊆ E with of 
size |E'| ≤ k such that E' contains at least 
one directed edge from every directed 
cycle in 𝒢.

○ [Gav77] showed that DBFAS is NP-hard.
• The LEARN decision problem

○ Given variables X = (X1, …, Xn), a 
probability distribution ℙ over X, and a 
parameter bound p, determine whether 
there exists a Bayes net 𝒢 with at most p 
parameters such that ℙ is Markov with 
respect to 𝒢.

○ Markov = ??
○ [CHM04] showed that LEARN is NP-hard 

via reduction from DBFAS
• What is "Markov"?

○ A probability distribution ℙ is said to be 
Markov with respect to a DAG 𝒢 if 
d-separation (some graphical notion) in 𝒢 
implies conditional independence in ℙ.

○ Note that any distribution is Markov with 
respect to some Bayes net over the 
complete DAG, since there are no 
d-separations implied by this kind of DAG; 
such a Bayes net over a complete DAG 
requires 2|X| - 1 parameters to describe.

• We define LEARN-DBFAS as the set of 
instances of LEARN that are in the range of the 
reduction of [CHM04] from DBFAS to LEARN

• [CHM04] showed that LEARN-DBFAS is 
NP-hard, even when given access to an 
independence oracle for ℙ.
○ "Succinct representation" of [CHM04]: 

Distribution ℙ is a marginal of a Bayes net 
of small maximum in-degree

Suppose we are given sample access to a 
distribution ℙ and are promised that there 
exists a Bayes net on 𝒢 with at most p 
parameters such that ℙ is Markov with 
respect to 𝒢. Is it hard to find a Bayes net 
𝒢' that has α ⋅ p parameters such that ℙ is 
Markov with respect to 𝒢' (where 𝒢' may 
not be 𝒢), for some constant α > 1?


